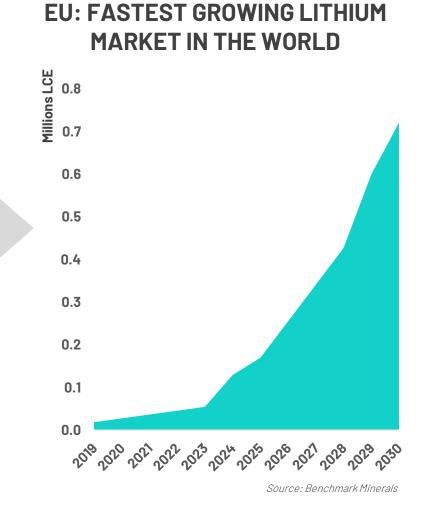
VULCAN ENERGY ZERO CARBON LITHIUMTM

Zero Carbon *F* Energy

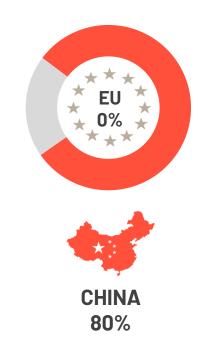
Disclaimer & Cautionary Statement

The information contained in this presentation has been prepared by Vulcan Energy Resources Ltd (VUL). This presentation is not an offer, invitation, solicitation or other recommendation with respect to the subscription for, purchase or sale of any securities in VUL and is not intended to be used for the basis of making an investment decision. This presentation has been made available for information purposes only and does not constitute a prospectus, short form prospectus, profile statement or offer information statement. This presentation is not subject to the disclosure requirements affecting disclosure documents under Chapter 6D of the Corporations Act 2001 (Cth). This presentation may contain certain forward-looking statements and projections regarding estimated, resources and reserves; planned production and operating costs profiles; planned capital requirements; and planned strategies and corporate objectives. Such forward looking statements/projections are estimates for discussion purposes only and should not be relied upon. They are not guarantees of future performance and involve known and unknown risks, uncertainties and other factors many of which are beyond the control of VUL. The forward-looking statements/projections are inherently uncertain and may therefore differ materially from results ultimately achieved. VUL does not make any representations and provides no warranties concerning the accuracy of the projections, and disclaims any obligation to update or revise any forward-looking statements/projects based on new information, future events or otherwise except to the extent required by applicable laws. While the information contained in this presentation has been prepared in good faith, neither VUL nor any of its directors, officers, agents, employees or advisors give any representation or warranty, express or implied, as to the fairness, accuracy, completeness or correctness of the information, opinions and conclusions contained in this presentation. Accordingly, to the maximum extent permitted by law, none of VUL, its directors, employees or agents, advisers, nor any other person accepts any liability whether direct or indirect, express or limited, contractual, tortuous, statutory or otherwise, in respect of, the accuracy or completeness of the information or for any of the opinions contained in this presentation or for any errors, omissions or misstatements or for any loss, howsoever arising, from the use of this presentation. This presentation is provided on the basis that you will carry out your own independent inquiries into the matters contained in the presentation and make your own independent decisions about the affairs, financial position or prospects of VUL.

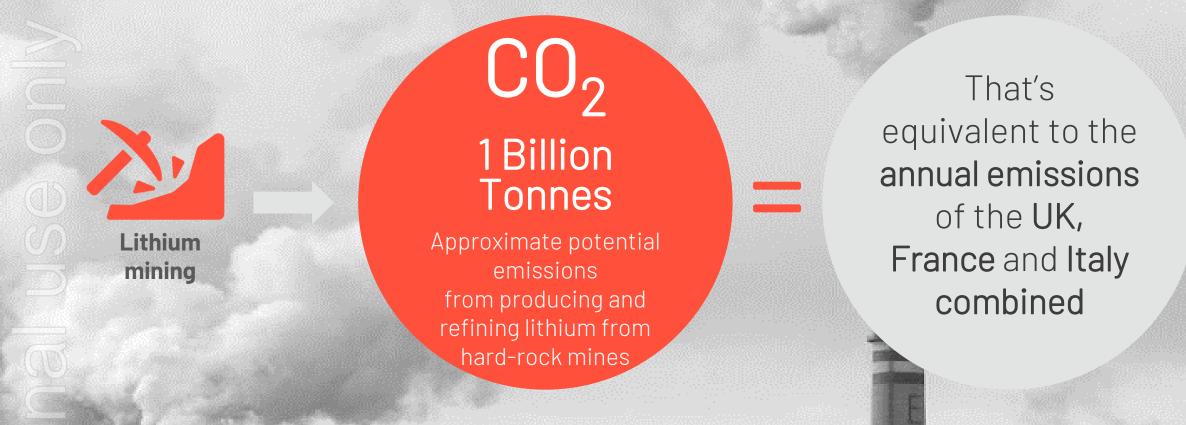
To achieve the outcomes of Vulcan's Pre-Feasibility Study, initial funding in the order of €700m (including contingency) will be required, and a further €1,138m will be required for Phase 2. It should be noted that, as with any project at this stage, the ability to develop the project may depend on the future availability of funding, and while the Company believes it has reasonable basis to assume that future funding will be available and securable, this is not guaranteed. Industry best practice exploration for deep geothermal brine occurs using 2D and 3D-seismic data acquisition, analysis and interpretation, which Vulcan has completed. As stated in the text of this announcement, in deep geothermal brine projects, the first well drilled is also the first production well, so it follows that financing for the production well drilling is expected to occur first, after a definitive feasibility study is completed. Vulcan Executive Director Dr. Horst Kreuter is an expert in developing deep geothermal projects in Germany and worldwide, including having started the first geothermal development company in Germany, therefore Vulcan's Board has direct experience and has been involved in examples of how the funding process works in this type of project. There are numerous examples of projects financed in this way, prior to drilling, within the same area as Vulcan in the Upper Rhine Valley. Over the past 16 months, the Company has significantly advanced discussions with traditional debt and equity financiers in Europe, including some of the largest European-Union backed, state-owned and private development banks in Europe. This has resulted in written support already being provided by some of these institutions for the provision of senior debt for the project, based on the project progress to date. The Project further benefits from being one of only two lithium projects financially and administratively supported by EU-backed group EIT InnoEnergy, which is the founder and steward of the European Battery Alliance, that counts among its members the most significant financiers of battery metals, battery and electric vehicle projects in Europe including the European Investment Bank. InnoEnergy has placed Vulcan on its Business Investment Platform, through which it is further assisting Vulcan with conversations with European financiers. The size and location of the deposit, together with other strong project fundamentals, in the middle of large end users associated with European electric vehicles that is driving lithium demand makes the project a strategic asset as evidenced by the large interest shown in the Project by public/private banks, financiers, end -users and large lithium specialist companies to-date. An improvement in market conditions since work commenced and a perceived high growth outlook for the global lithium market enhance the Company's view of the fundability of the Project. Based on this, the Board is confident the Company will be able to finance the Project through a combination of syndicated senior debt, export credits, industry related hybrid debt, equity and forward sales at the Project level. The size of the Project will necessitate a syndicate of banks and in the current low interest rate European market the Project represents a higher yield opportunity. The Company is also considering the bond market in view of the increasing market and availability of ESG bonds seeking opportunities which meet ESG criteria and have longer term yields. The Board has relevant experience in funding large scale projects with Mr Rezos, the Chairman, having been involved in funding large scale mining projects and energy projects as a former Investment Banking Director of HSBC Holdings with direct project finance, syndicated debt, export credits, bond and equity experience in multiple jurisdictions, including Europe. Mr Rezos was also a non-executive director of Iluka Resources Limited at the time of funding and developing the large-scale Jacinta Ambrosia and Murray Basin projects. Dr Horst Kreuter, has been involved in developing and funding a number of geothermal projects in Germany. For the reasons outlined above, the Board believes that there is a "reasonable basis" to assume that future funding will be available and securable.


COMPETENT PERSON STATEMENT

ASX announcement made by Vulcan on the Zero Carbon Lithium Project ", released on


How to Support 30 Million EVs by 2030 in the EU?

ZERO LOCAL SUPPLY OF LITHIUM HYDROXIDE


Source: Benchmark Minerals

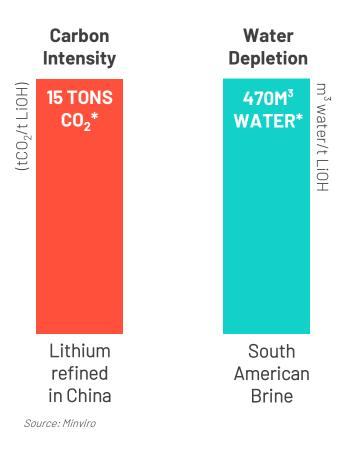
W

High Environmental Footprint of Existing Supply Chain

Lithium is a critical resource for batteries and electric vehicles. To fully electrify our cars with lithium-ion batteries, we need lithium.

Using the current main source of producing and refining lithium, from hard-rock mines, will emit approximately 1 billion tonnes* of CO2 to fully electrify the world's passenger vehicles.

Minviro Ltd.)


*Based on 50 kWh average lithium-ion battery size, with average of 0.9 kg LCE/kWh across different cathode chemistries. Total 1.4 vehicles in use worldwide (carsquide.com.au). Carbon footprint per Julio I violation from hard-rock mining calculated as 15t CO2 per ton LiOH (The CO2 Impact of the 2020 Battery Quality Lithium Hydroxide Supply Chain,

Δ

High Environmental Footprint of Existing Supply Chain

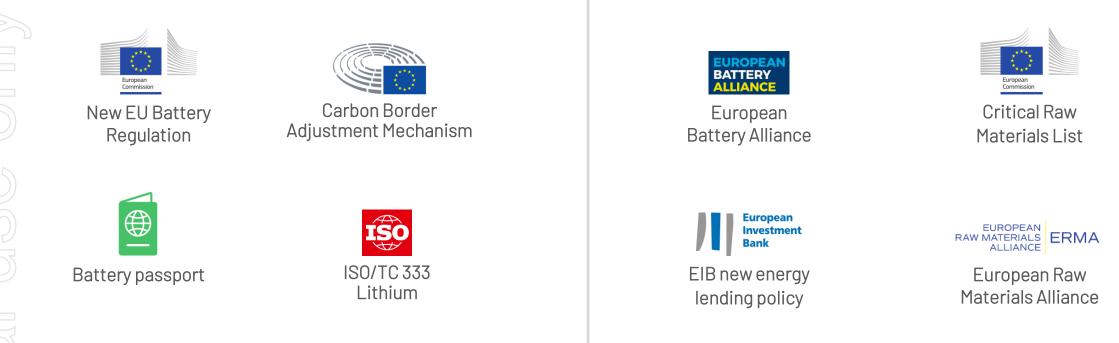
LITHIUM PRODUCTION EMITS MORE CO₂ THAN NICKEL AND COBALT

AUTOMAKERS COMMITTING TO CARBON NEURALITY

Volkswagen promises: "*CO₂-neutral production including supply chain*"

DAIMLER

Daimler promises to: "make our fleet of new cars CO₂-neutral"


BMW promises to: *"Reduce carbon emissions across the entire life cycle of its products – including the supply chain"*

The EU Stepping in to Support and Regulate the Industry

LOCAL SUPPLY CHAIN

GREEN SUPPLY CHAIN

Thierry Breton - EU commissioner: "*We are 100% dependent on lithium imports. The EU, if finding the right environmental approach, will be self-sufficient in a few years, using its resources*".

Learn more in Appendix 4, 5 & 6

Vulcan – Zero Carbon Lithium™

FOOTPRINT World-first Zero Carbon **Lithium Project**

Geothermal & DLE in Germany

Dual revenue Green energy & lithium

In the heart of the fastest growing lithium market in the world

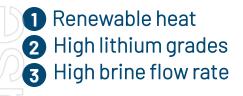
Largest JORC lithium **Resource in Europe**

Potential for very low **OPEX operation**

Strong cash position, fully funded to FID

Team of world leading experts

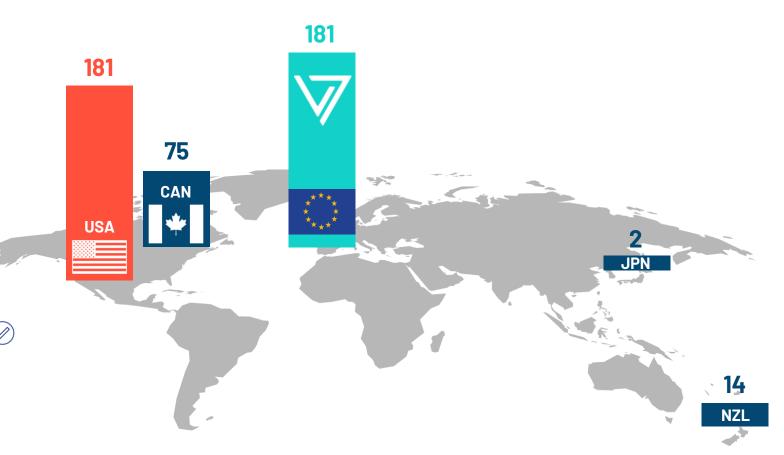
Project financially supported by the EU

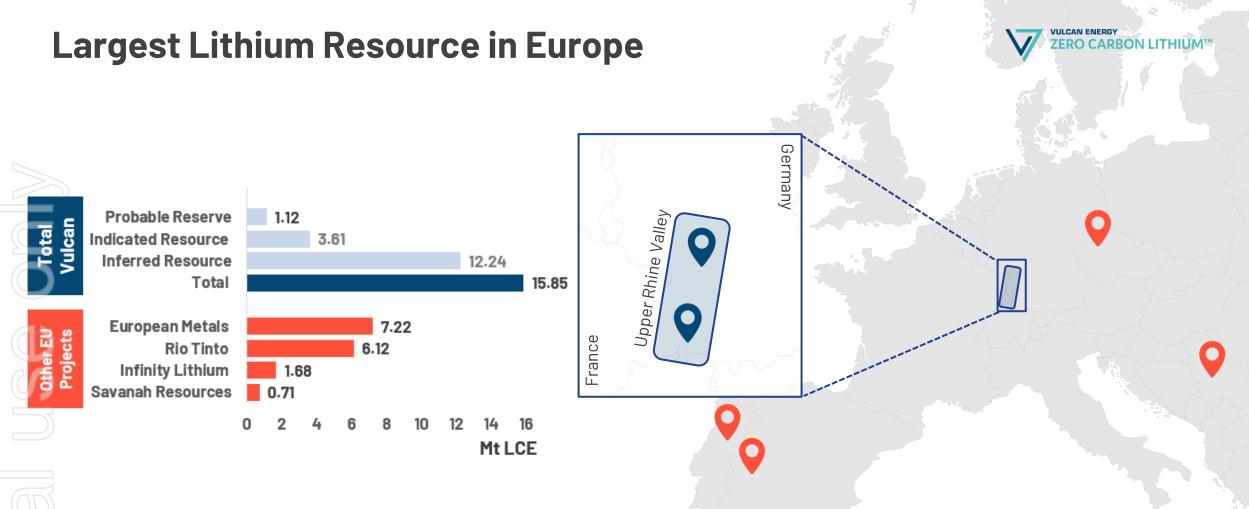

ENERGY BUSINESS 74**MW Renewable Electricity**

LITHIUM BUSINESS 40,000 tons per year Lithium hydroxide

We Scoured the Globe to Find the Right Project

We had the lithium expertise to know that Zero Carbon Lithium was possible using modern extraction methods, provided a deep geothermal brine reservoir could be found that had the following geological conditions:

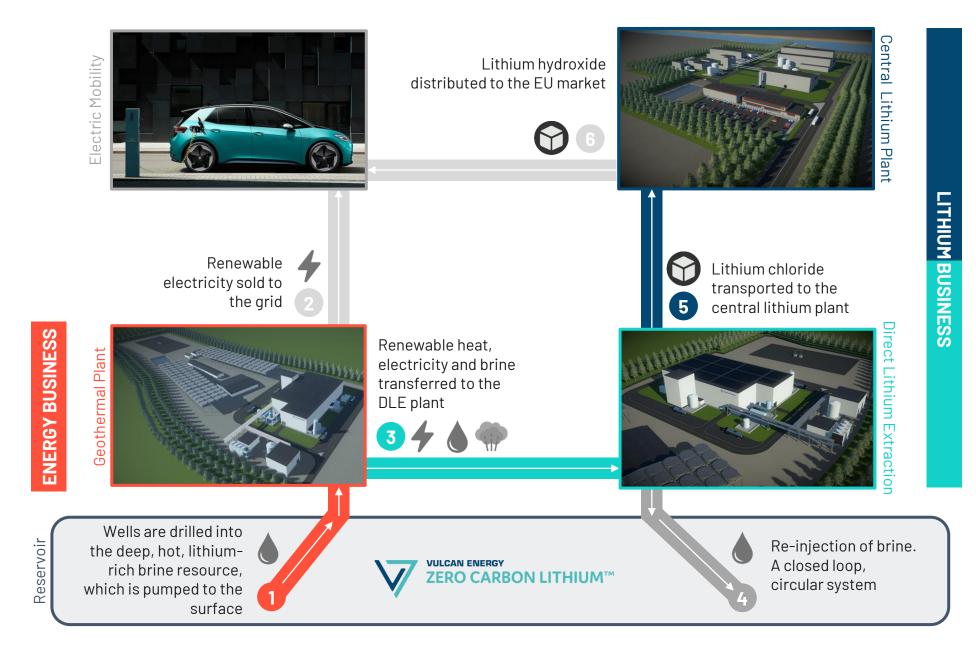



Our research showed that this **could be done in just two places**:

The Upper Rhine Valley in Germany (2) (2)
 The Salton Sea in California

We chose **Germany** and **Europe**.

LITHIUM CONCENTRATION IN BRINE (MG/L LITHIUM)



Very large license package >1,000km² 3 exploration permits granted and several applications Largest lithium resource in Europe: 15.85Mt LCE

Vulcan's Renewable Energy & Lithium Chemicals Project

Commercially Mature Technologies Combined

Our process replicates existing operations taking place commercially across the world. What is unique about us is the combination of those different steps.

- Hundreds of geothermal energy plants running **globally**
- **37** deep geothermal energy plants in operation in Germany
- Upper Rhine Valley well-known area for successful geothermal operations
- Team of leading experts in developing and permitting geothermal plants

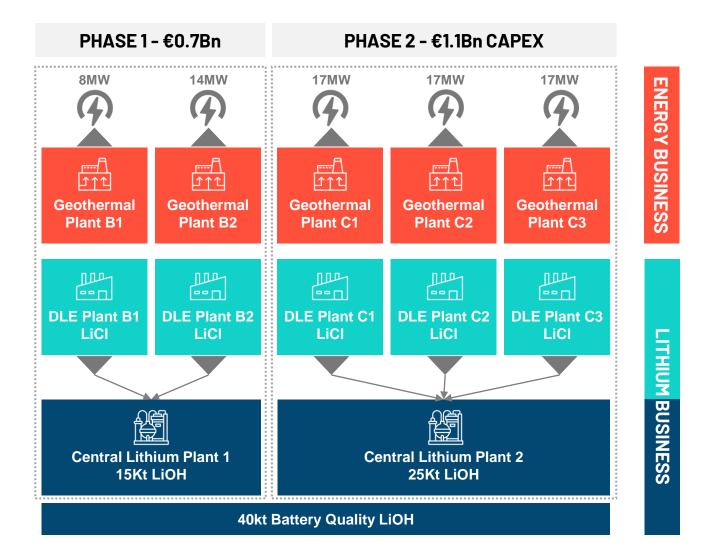
Direct Lithium 7 **Extraction Plant**

- **Direct Lithium Extraction** commercially used for decades.
- Adsorbent-type DLE technologies commercially available from several suppliers
- >90% lithium recoveries from initial . test work
- Ongoing piloting, demo plant . planned for H2 2021

Central Lithium Plant

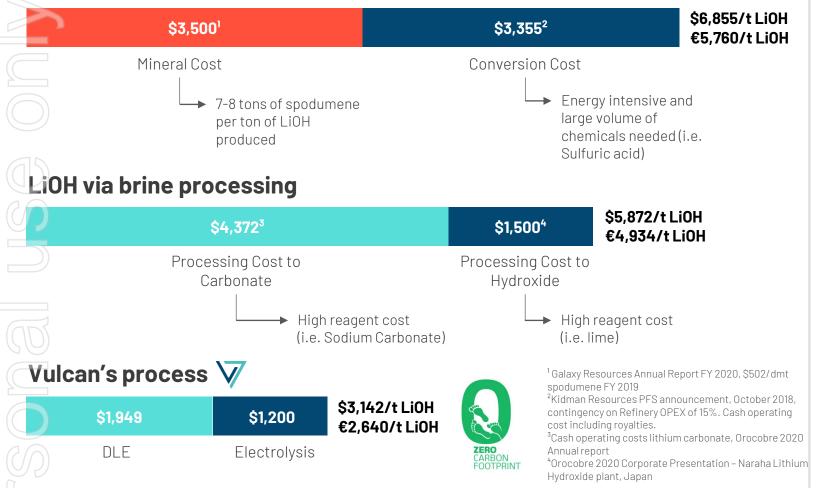
3

- Conversion of lithium chloride to • lithium hydroxide is using an electrolysis process
- Electrolysis has been used by the • chlor-alkali industry for more than 100 years
- First **samples** of battery quality lithium hydroxide expected shortly


Vulcan	
Group	In-house team of experts

Dual Purpose Renewable Project

Energy Business, Lithium Business: Zero Carbon Lithium™


CAPEX breakdown in Appendix 18

Potential for Very Low OPEX Operation

Low-cost South American brine and Australian/Chinese mineral conversion vs Vulcan's process

LiOH via hard-rock processing

Feedstock

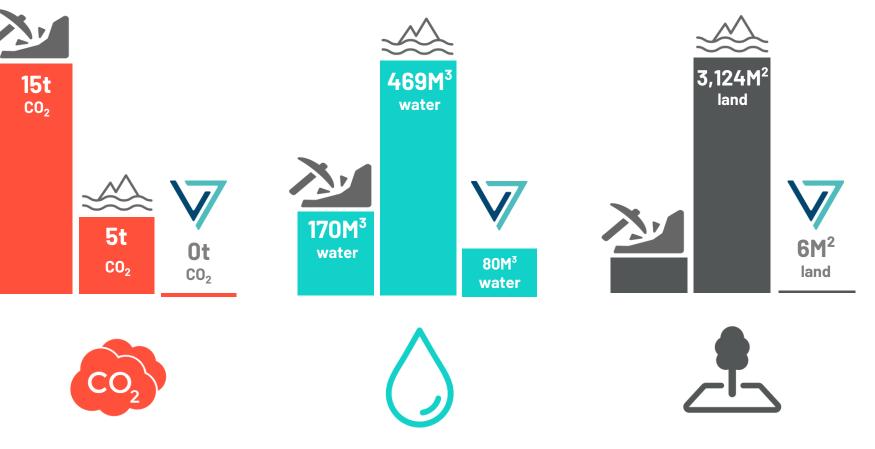
Vulcan's "feedstock" is low cost and has dual purpose: lithium extraction and energy production in the form of renewable electricity.

Processing

Vulcan uses DLE to isolate lithium as opposed to using large volumes of chemicals such as sulfuric acid to dissolve a rock feedstock or soda ash for brine. Vulcan also uses low-cost energy coming from its geothermal operation.

Upgrading

Vulcan uses electrolysis to upgrade chloride into a high purity hydroxide using renewable energy. No heavy reagent usage such as sodium hydroxide or lime.


Vulcannotes that the comparison operating cost figures above are actual results from lithium hydroxide projects that are currently in production, whereas the above data for Vulcan's process is based on estimates in the PFS. Vulcan's LHM products will potentially have the lowest carbon footprint in the world, as well as the lowest operating costs per tonne of LHM based on current global operations. This is a unique differentiator for the Vulcan project. Vulcan considers that it is appropriate to compare the estimates from the PFS to actual results from projects currently in production because Vulcan's process is unique and a comparison to other processes for producing lithium hydroxide is important to enable investors to contextualise the PFS results; and actual data from projects currently in production is the best available guide to benchmark the PFS results.

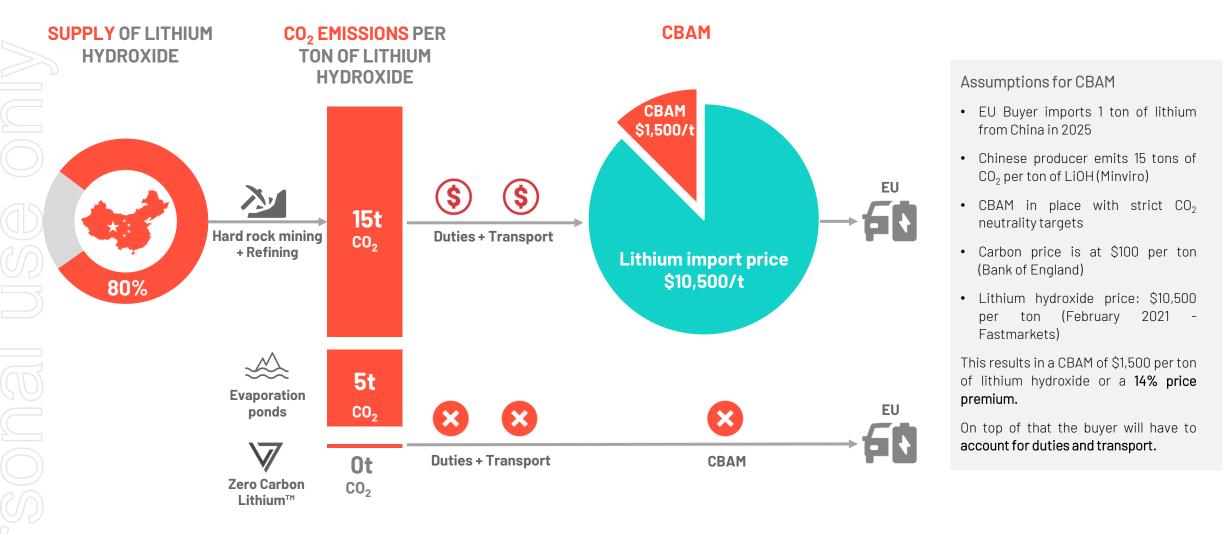
Peerless Environmental Credentials

Environmental footprint of lithium production routes

PER TON OF LITHIUM HYDROXIDE

60% of world lithium production **Evaporation ponds** 40% of world lithium production

Zero Carbon Lithium™

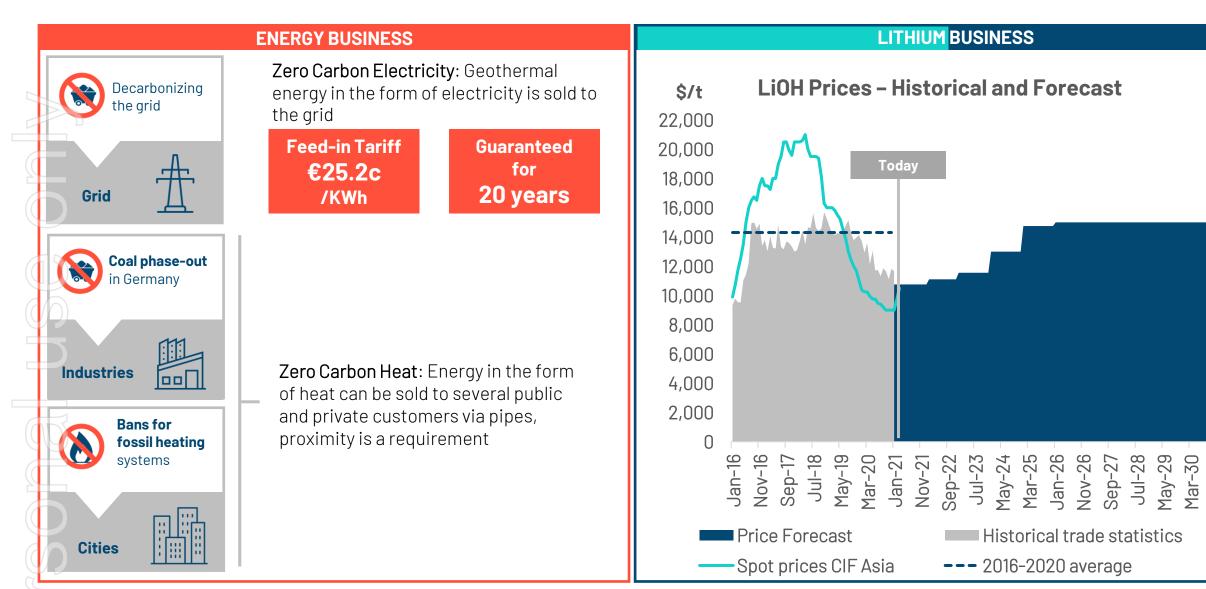

Hard rock mining

Vulcan draws on naturally occurring, renewable geothermal energy to power the lithium extraction process and create a renewable energy byproduct. This uses no fossil fuels, requires very little water and has a tiny land footprint.

Source: Minviro Life Cycle Analysis 2020 & Vulcan Energy's Pre-Feasibility Study

Cost Impact of Regulation on Lithium import prices

The example of the proposed Carbon Border Adjustment Mechanism (CBAM)



Source: Minviro Life Cycle Analysis 2020 & Vulcan Energy's Pre-Feasibility Study **VULCAN ENERGY**

ZERO CARBON LITHIUM™

Dual Revenues: Energy and Lithium

Source: Trade statistics compiled from Global Trade Atlas®, Benchmark Minerals (2016-2017), Fastmarkets (2017-2021), Canaccord Genuity (Forecast)

Project Financials

				UM BUSINESS
OUN	ENERGY BUSINESS T4MW Power			40,000tpy Li0H
	€0.7Bn NPV Pre-tax 16% IRR Pre-tax	€0.5Bn NPV Post-tax 13% IRR Post-tax	€2.8Bn NPV Pre-tax 31% IRR Pre-tax	€1.9Bn NPV Post-tax 26% IRR Post-tax
	€226M CAPEX Phase I Payback: 4 years	€0.066/ KWh OPEX	€2,640/t LiOH OPEX Payback: 4 years	€474M CAPEX Phase I

The Vulcan Zero Carbon Lithium[™] Board

VULCAN ENERGY RESOURCES LTD - BOARD

Gavin Rezos CHAIR

Executive Chair/CEO positions of two companies that grew from start-ups to the ASX 300.

Investment banking Director of HSBC. Previously Non-Executive Director of Iluka Resources.

Dr Heidi Grön **INDEPENDENT** NON-EXEC DIRECTOR

Josephine Bush

INDEPENDENT

NON-EXEC

DIRECTOR

Senior executive with Evonik, one of the largest specialty chemicals companies in the world, with a market capitalization of €14B and 32,000 employees. 20 years' experience in the chemical industry in Germany.

Member of the **EY** Power and Utilities Board. Led and

delivered the EY Global Renewables and Sustainable

Business Plan and spearheaded a series of major

ZERO CARBON LITHIUM™

Dr. Francis Wedin MANAGING DIRECTOR & FOUNDER-CEO

Founder of Zero Carbon Lithium Project. Battery materials and renewable energy industry executive, focused on developing global scale decarbonisation opportunities since 2014. Three discoveries of Lithium Resources on two continents.

Ex-CEO of Geothermal Group Germany GmbH and GeoThermal Engineering GmbH (GeoT). Co-Founder Dr. Horst Kreuter **CO-FOUNDER &** of Vulcan Zero Carbon Lithium Project. BOARD ADVISOR

Ranya Alkadamani **INDEPENDENT** NON-EXEC DIRECTOR

Founder of Impact Group International. A

Renewable Market Transactions.

communications strategist, focused on amplifying the work of companies that have a positive social or environmental impact.

Julia Poliscanova SPECIAL **ADVISOR**

Senior Director with the EU's Transport and **Environment**. Instrumental in shaping policies around EU vehicle CO2 standards & sustainable batteries.

Chartered Accountant and Chartered Secretary with +20 years' experience.

Former **Tesla** Head of Battery and Energy Supply Chain. Led and managed Tesla's multi-billion-dollar strategic partnerships and sourcing portfolios that support Tesla's Energy and Battery business.

Experienced Development Team

ENERGY BUSINESS

Agreement to acquire by **Vulcan Energy**

GeoThermal

Agreement to acquire by **Vulcan Energy** **Consultancy** company focused on deep geothermal projects at surface: **power plant, heat stations, drill pads, and permitting.** More than **300 years engineering knowledge of Gec-Co's team.** 25 team members, created in 2012

Planning and consultancy company for deep geothermal energy projects, based in the Upper Rhine Valley, Germany.

Highly credentialed scientific team with >100 years of combined world-leading expertise. 12 team members, created in 2005.

Project Development team based in Germany. **World-leading experts** in the fields of lithium chemistry, DLE and chemical engineering: 8 team members

<oupont>

Collaboration agreement signed with **DuPont** who will **leverage its portfolio** of DLE products to assist Vulcan with input and test work during Vulcan's Zero Carbon Lithium[®] project DFS.

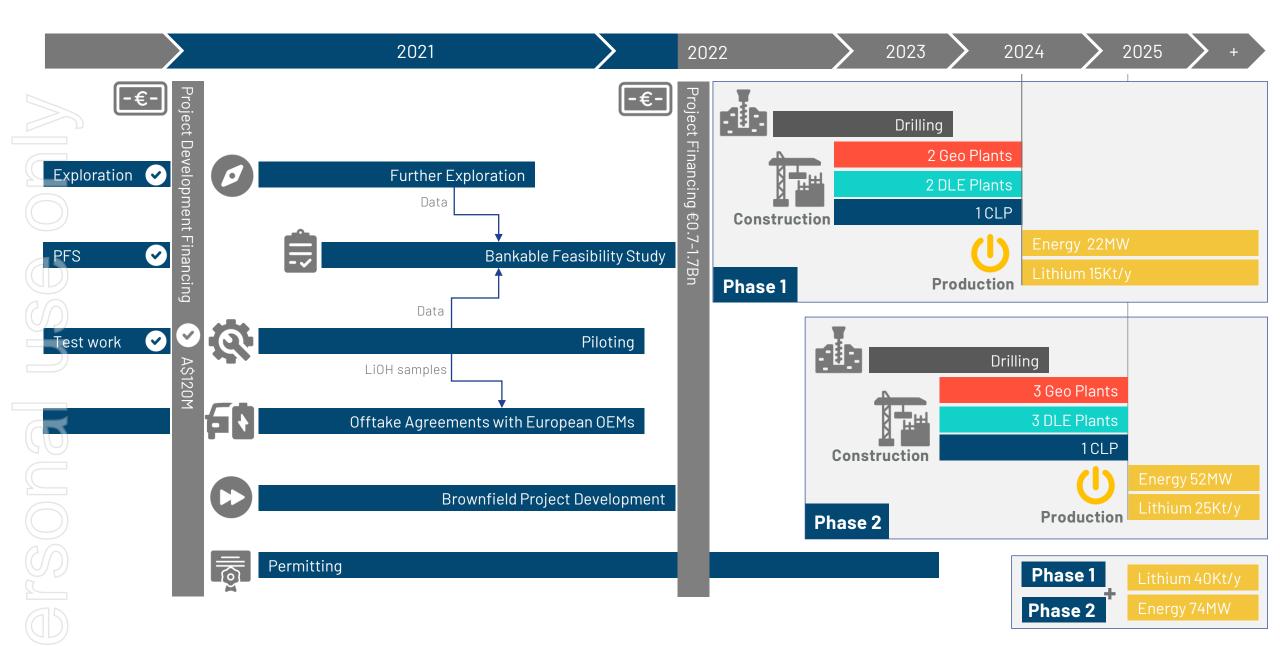
BUSINESS DEVELOPMENT

Thorsten Weimann CHIEF OPERATING OFFICER +25 years' experience in geothermal project development and operation in Germany.

EUROPE

Vincent Ledoux Pedailles VICE PRESIDENT +10 years in the lithium industry with executive and non-executive positions.

PUBLIC AFFAIRS & PUBLIC RELATIONS


GERMANY

AUSTRALIA

Project Timeline

Share Price & Capital Structure

	ASX : VUL	
	Shares on Issue	107,464,256
	Performance Milestone Shares*	4,400,000
))	Performance Rights*	10,950,000
5	Market Capitalization at \$7.80 (undiluted)	~\$838.2M
)	Enterprise Value at \$7.80 (undiluted)	~\$721.2M
Ĵ	Cash Position	~\$117M
	Ful	lly financed to FID
J	Top 20 Shareholders	~51%
	Management (undiluted)	~19%
_ .		

Image: second second

Dr. Francis Wedin	12.10%
Hancock Prospecting Pty Ltd	6.74%
Mr. Gavin Rezos	5.61%
Mr. John Hancock	5.00%
BNP Energy Transition Fund	1.43%

Frankfurt: 6K0

*Refer ASX Announcement 10 July 2019 for further details.

Conclusion

only

nal use

D

@VulcanEnergyRes
v-er.com
info@v-er.eu
ASX:VUL
FRA:6K0

Thank You

PUBLIC RELATIONS

EU

FINSBURY

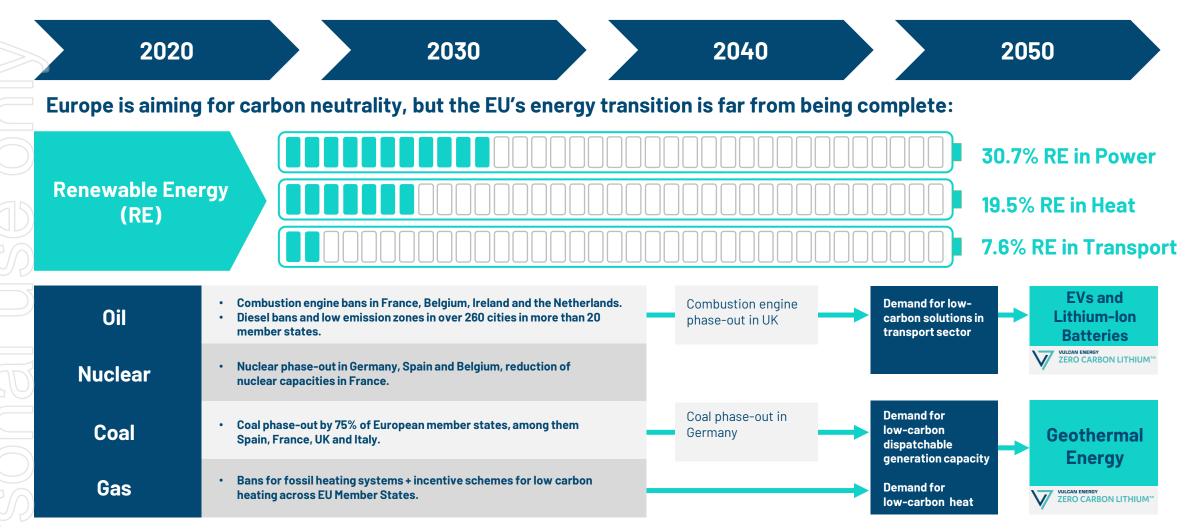
Germany

Australia

Appendices

Table of Appendices

Appendix 1: Vulcan's Renewable Project Description Ο Appendix 2: The fossil-nuclear era in Europe is coming to an end 0 **Appendix 3:** EU Map Lithium-ion Battery Capacity Ο **Appendix 4:** EU Regulatory Support **Appendix 5:** The New EU Battery Regulation Appendix 6: Vulcan financially supported by the EU **Appendix 7:** Establishing world-first full lithium traceability Appendix 8: Vulcan to offset CO2 penalties for automakers Appendix 9: Vulcan Energy's Board 0 Appendix 10: Largest Lithium Resource in Europe Appendix 11: Brine Composition Comparison Appendix 12: Process Flow Sheet Appendix 13: Adsorption Process Step 1 Appendix 14: Adsorption Process Step 2 Appendix 15: Agreement To Acquire GeoT 0 **Appendix 16:** Agreement To Acquire Gec-co Appendix 17: Agreement With DuPont Appendix 18: Project Economics - CAPEX **Appendix 19:** Project Economics - Possible Structures Appendix 20: Project Economics - Sensitivities Analysis Appendix 21: Information for slide 8 & 9


Appendix 1: Vulcan's Renewable Project Description

Upper Rhine Vallev Reservoir

European Union Germany Sector backed by ESG and EU funds Bans for [\[v]] Coal phase-out **EU New Battery regulation** looking to finance the green transition fossil heating in Germany systems **European Battery Alliance** New industry for Europe, supporting the transition from ICE age to E-mobility **EU Recovery Plan EU Green Deal** Attracting new industries, R&D, Industries Cities generating growth **Zero Carbon Heat** Lithium-Ion Battery ි ළ **Supply Chain** VULCAN ENERGY ZERO CARBON LITHIUM Combustion >500GWh 4 engine bans battery capacity Heat 4 across Europe by 2030 ᡗ↑₵ പ Electricity **Geothermal Brine** Lithium Chloride **Europe is** Zero **Li-Rich Brine** Carbon aiming for EV **Batterv** Geothermal Direct Central _ithium[™] carbon neutrality **Production** Electricity Lithium Extraction **Lithium Plant Production** by 2050 **Feed-In Tariff**

Regulations & Initiatives

Appendix 2: The fossil-nuclear era in Europe is coming to an end

VULCAN ENERGY

ZERO CARBON LITHIUM[™]

Appendix 3: EU Map Lithium-ion Battery Capacity

VULCAN ENERGY ZERO CARBON LITHIUM™

x80

Brandenburg, 2021 At least 20GWh TESLA

(H)

ATL

Salzgitter, 2025 40GWh

Spain, Eastern Europe, etc. 4x40GWh

Erfurt, 2022 14 GWh LATER 100 GWh

Sunderland, 2010 Æ 2.5 GWh

Willstätt, 2020 Leclanché 1 GWh

Germany & France, 2022 16 GWh, LATER 48 GWh

Überherrn, 2023 SVOIT 24 GWh

Germany, 202X TERRAE BMZ 4 GWh, LATER 8 GWh

Bratislava, 2024 īnoBat 10GWh

EcoPro

Skellefteå, 2021 32 GWh LATER 40 GWh

Schwarzheide, 2022

CATHODE MATERIALS

St Athan Wales, 2023

10GWh, later 35Gwh

Hungary, TBC CATHODE MATERIALS mıcrovast Brandenburg, 2021 RAMP UP TO 8-12 GWh

> Bitterfeld, 2022 ARASIS 16 GWh

6 GWh, LATER 70 GWh

Komaron 1+2, 2020 SK innovation 7.5 GWh, LATER 23.5 GWh

GFREYR

Panasonic Unknown

Unknown

>800GWh LITHIUM-ION **BATTERY CAPACITY PLANNED BY 2030**

8GWh, later 32GWh

Norway, TBC

Europe, TBC

BYD Unknown

3 GWh, LATER 15 GWh Mo I Rana, 2023

Appendix 4: EU Regulatory Support

GREEN SUPPLY CHAIN

New EU Battery Regulation including:

- **Responsible sourcing** of raw materials such as lithium
- CO2 footprint threshold for all batteries sold in Europe
- Traceability guidelines for all raw materials used in batteries

Carbon Border Adjustment Mechanism: increase cost of importing carbon heavy lithium

Battery passport: track & ensure responsible mineral sourcing

ISO/TC 333 Lithium: insuring new ISO norms includes environmental measures for lithium production

European Battery Alliance: create a competitive and fully integrated battery manufacturing chain in Europe.

Critical Raw Materials: Lithium added to the list of Critical Raw Materials 2020

LOCAL SUPPLY CHAIN

EIB new energy lending policy supporting projects relating to the supply of critical raw materials

European Raw Materials Alliance: make Europe economically more resilient by attracting investments to the raw materials value chain.

Thierry Breton - EU commissioner: "We are 100% dependent on lithium imports. The EU, if finding the right environmental approach, will be self-sufficient in a few years, using its resources".

Appendix 5: The New EU Battery Regulation

New measures announced in December 2020 including:

1. Responsible sourcing : New mandatory procedures to ensure sustainable and ethical sourcing of raw materials such as lithium.

2. CO₂ footprint : All batteries sold in Europe must declare their carbon footprint. This will come in 3-step approach : 1/ Declaration (2024), 2/ Classification (2026), 3/ Threshold (2027). Batteries with the highest carbon footprint will be banned in Europe.

3. Traceability: All raw materials used in batteries to be procured according to OECD recognized guidelines for sustainable sourcing. Thanks to blockchain technology, each battery will have a digital passport tracking all components upstream.

Maroš Šefčovič – European Commission VP : *"The new EU battery CO2 regulation will have an immediate impact on the market, which up until now has been driven only by price".*

Thierry Breton - EU commissioner: "We are 100% dependent on lithium imports. The EU, if finding the right environmental approach, will be self-sufficient in a few years, using its resources".

Other EU measures and initiatives supporting lithium:

EU list of Critical Raw Materials & European Raw Materials Alliance

EIB new energy lending policy supporting projects relating to the supply of critical raw materials

Alliance

Appendix 6: Vulcan financially supported by the EU

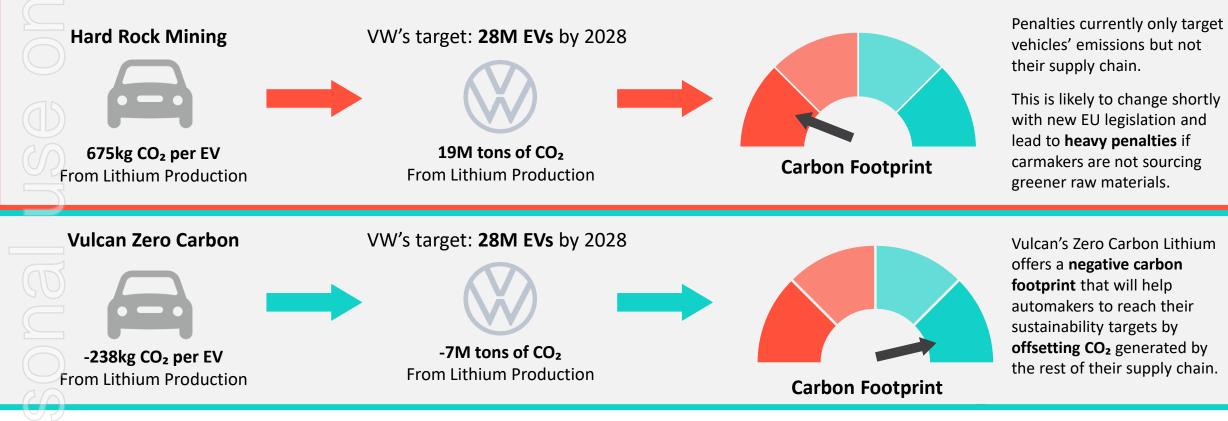
EIT InnoEnergy will marshal its ecosystem and significant EUwide resources to launch the Zero Carbon Lithium Project forward:

- Securing project funding, including the use of applicable EU, national or regional grant schemes, and liaising with EU project finance and development banks.
- Driving relationships with European lithium offtakers, aimed at entering into of binding offtake agreements.
- Obtaining and fast-tracking necessary licenses.
- All services are entirely success-based, with no upfront cost to Vulcan.

Appendix 7: Vulcan & Circulor to establish world-first full Vero CARBON LITHIUM** Ithium traceability & transparency across the EU supply chain Circulor

Circulor offers a software solution that enables customers to **track raw materials and CO2 emissions** through supply chains to **demonstrate responsible sourcing and sustainability**.

By applying blockchain, artificial intelligence, machine learning, facial recognition, mass balancing and other technologies Circulor makes sure that the digital twin is reliably linked to the physical resource through out its entire journey. This enables:


1. Reputational Protection	2. Proof of comp guidelines and re		ynamic on tracking	4. Reducing due diligence, audits and reporting costs
	IN	IMUTABLE RECORD OF PRO	DVENANCE	
				LOGISTICS FINAL ASSEMBLY
Facial GPS & QR Recognition CREATE DIGITAL TW	NFC Tags Mass Balance	Container Trading TRACE MATER	Mass Balance G	PS & RFID Product ID CESSES
				Example applied to the cobalt supply chain
Circulor's existing customers:	CATL C	LG Chem POS	MICAL polestar	TOTAL

Appendix 8: Vulcan to offset CO2 penalties for automakers

CO₂ emissions linked to lithium production

Average Battery Pack: 50KWh, Average LCE per KWh: 0.9kg, Average LCE consumption per EV: 45kg, Vulcan: -5.3t of CO2 per ton of LiOH, Average Hard Rock operation with Chinese Converter: 15t of CO2 per ton of LiOH

Appendix 9: Vulcan Energy's Board

Gavin Rezos CHAIR

Executive Chair/CEO positions of two companies that grew from start-ups to the ASX 300. Extensive international investment banking experience. Investment banking Director of HSBC with senior multiregional roles in investment banking, legal and compliance

Currently Chair of Resource and Energy Group and principal of Viaticus Capital.

functions.

Previously Non-Executive Director of Iluka Resources, Alexium International Group.

Dr. Francis Wedin MANAGING DIRECTOR & FOUNDER-CEO

Founder of Vulcan Zero Carbon Lithium Project. Lithium industry executive since 2014. Previously **Executive Director** of ASX-listed Exore Resources Ltd. Three discoveries of JORC Lithium Resources on two

continents including Lynas Find, now part of Pilbara Minerals'

Pilgangoora Project in production.

Management & Executive experience in resources sector on four continents; bilingual; dual Swedish &

Australian

nationality.

Dr. Horst Kreuter **CO-FOUNDER & BOARD ADVISOR**

Ex-CE0 of Geothermal Group Germany GmbH and GeoThermal Engineering GmbH (GeoT). Co-Founder of Vulcan Zero Carbon Lithium Project.

> Successful geothermal project development & permitting in Germany and worldwide.

Widespread political, investor and industry network in Germany and Europe.

Based in Karlsruhe, local to the project area in the Upper Rhine Valley.

Annie Liu

Former **Tesla** Head of Battery and Energy Supply Chain. Led and managed Tesla's multi-billion-dollar strategic partnerships and sourcing portfolios that support Tesla's Energy and Battery business units including Battery, Battery Raw Material, Energy Storage, Solar and Solar Glass, including raw materials sourcing efforts such as

20 years' experience with Tesla and Microsoft.

lithium for battery

cells.

Dr. Heidi Grön NON-EXEC DIRECTOR

VULCAN ENERGY RESOURCES LTD - BOARD

Dr. Grön is a chemical engineer by background with 20 years' experience in the chemicals industrv.

Since 2007, Dr. Grön has been a senior executive with Evonik, one of the largest specialty chemicals companies in the world, with a market capitalization of €14B and 32,000 employees.

At Evonik, Dr. Grön is currently responsible for: Global product; Impact assessment and development of solutions for the chemicals strategy for sustainability; Management of Evonik's major investment volumes.

Josephine Bush NON-EXEC DIRECTOR

Member of the EY Power and Utilities Board, Led and delivered the FY **Global Renewables** and Sustainable Business Plan and spearheaded a series of major Renewable Market Transactions

Successfully advised on the first environmental vieldco London Stock Exchange listing, Greencoat UK Wind PLC.

Ms. Bush is a Chartered Tax Advisor, holds an MA Law degree from St Catharine's College, Cambridge, and brings a wealth of experience in ESG strategic advisory.

Ranya Alkadamani NON-EXEC DIRECTOR

Founder of Impact

ADVISOR

Julia Poliscanova SPECIAL

Rob lerace

CFO / COMPANY

Senior Director with the EU's Transport and Environment. Instrumental in shaping policies around EU vehicle CO2 standards & sustainable batteries.

> On the steering committee for the Battery CO2 Passport program of the Global Battery Alliance.

Previously worked for the Mayor of London and in the European Parliament following EU legislation on renewables, energy efficiency and sustainable transport.

Chartered Accountant and Chartered Secretary with +20 years

experience. Experience in corporate governance, debt and capital raising, tax planning, corporate acquisitions and

divestment and farm in/farm out transactions.

Grad Dip in Applied Corporate Governance from the Governance Institute of Australia and a Grad Cert of Applied Finance and Investment from the Securities Institute of Australia.

34

Group International. A communications strategist, focused on amplifying the work of companies that

have a positive social or environmental impact.

Experience in

working across

for high profile

leading

Rudd.

people, including

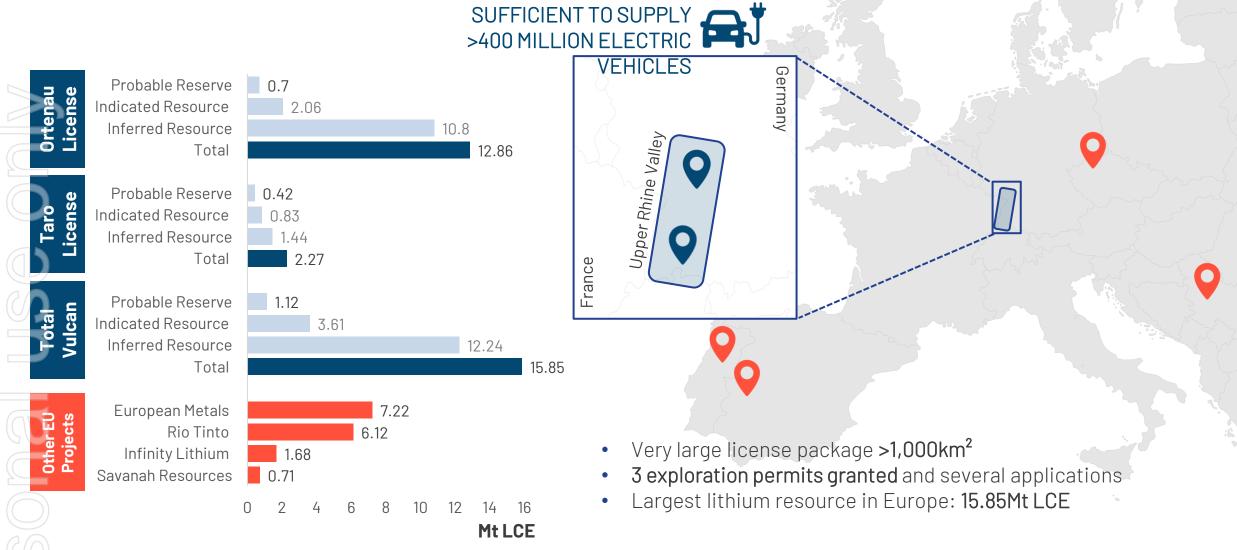
one of Australia's

philanthropists,

Australia's then

Foreign Minister

Minister, Kevin


and former Prime

Andrew Forrest and

media markets and

Appendix 10: Largest Lithium Resource in Europe

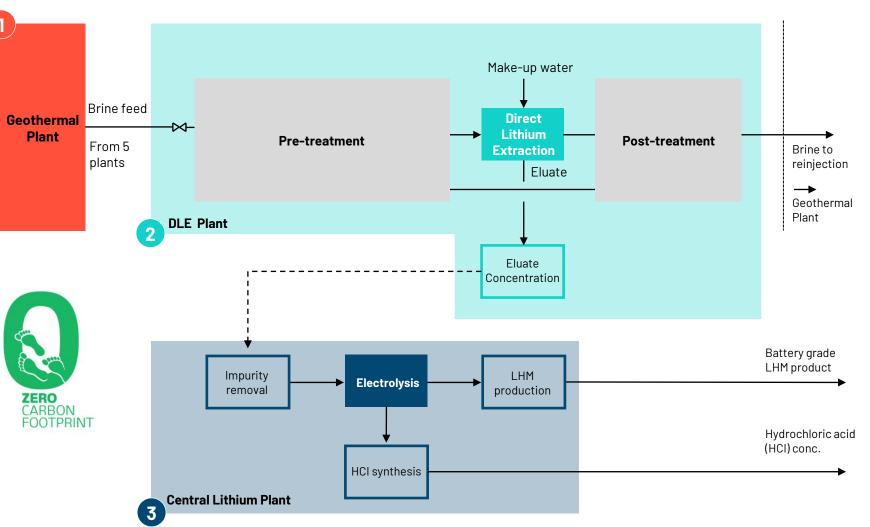
Notes: Vulcan's URVP Li-Brine resource and reserve area in Europe. Mineral resources are not mineral reserves and do not have demonstrated economic viability. The preceding statements of Reserves conforms to the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code) 2012 edition. 100% of the material in the PFS project schedule is included in the Probable Ore Reserves category. The Probable Ore Reserves were calculated assuming the production and processing methods determined for the PFS. Sources for other company data, which have all at the stage of having completed a Pre-Feasibility Study, with varying mixes of Inferred, Indicated and Measured Resources: ASX:EMH 10/2020 presentation, ASX:RIO: 12/2020 release, ASX: INF: 06/2020 presentation, AIM:SAV: 11/2020 presentation. Refer to Appendix 4

Appendix 11: Brine Composition Comparison

		Upper Rhine Valley Brine	Salton Sea Brine		URV vs SS
Salts (Cations)	Analyt e	Value	Value	Unit s	%
Lithium: Source of revenue	Li	214	213	mg/l	+1%
	Na	22,231	59,600	mg/l	-63%
	К	4,878	18,126	mg/l	-73%
Л	Rb	30.0	-	mg/l	
	Cs	16.0	-	mg/l	
	Mg	99	54	mg/l	+83%
	Ca	5,195	31,714	mg/l	-84%
	Sr	276	475	mg/l	-42%
	Ва	14.4	139	mg/l	-90%
Anions					
	CI	60,567	145,000	mg/l	-58%
	SO4	172	127	mg/l	+35%
	F	4.7	24	mg/l	-81%
	Br	288	-	mg/l	
Metals (Cations)					
Requires additional purification step if high	в	47	401	mg/l	-88%
4	Be	0.0207	0.2	mg/l	-91%
Can negatively affect DLE if high	Si	67.2	550	mg/l	-88%
Can negatively affect DLE if high	As	20.3	8.8	mg/l	+131%
Can negatively affect DLE if high	Mn	24.5	1,563	mg/l	-98%
Can negatively affect DLE if high	Fe	37.4	664	mg/l	-94%
Can negatively affect DLE if high	Zn	5.2	492	mg/l	-99%
	Pb	0.156	108	mg/l	-100%
Can negatively affect DLE if high	AI	0.014	16	mg/l	-100%
	Ni	0.188	0.5	mg/l	-61%
Can negatively affect DLE if high	Co	0.015	8	mg/l	-100%
	Sb	0.717	6.5	mg/l	-89%
9	Ti	<0.1	-	mg/l	
	v	0.165	0.6	mg/l	-71%
	Cr	0.181	2	mg/l	-89%
	Cd	0.0205	3	mg/l	-99%
	Mo	0.0124	8	mg/l	-100%
	TI	0.328	2	mg/l	-86%
pH		5.828	4.9	-	

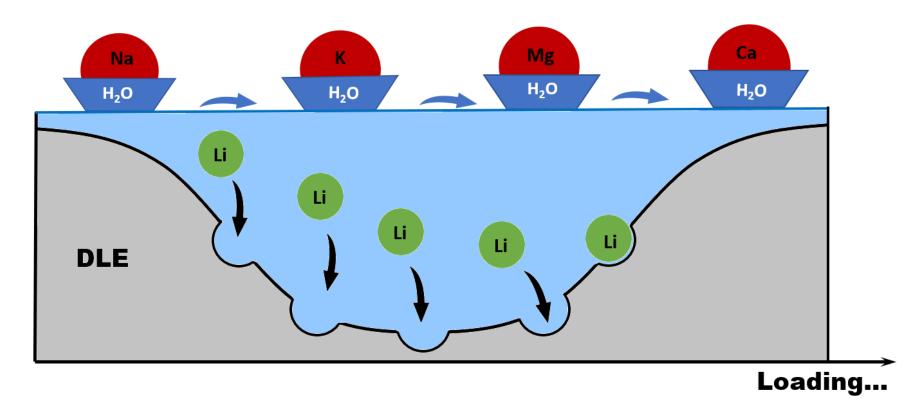
Note: Refer to ASX announcement of 10 March 2021 "High grade lithium, low impurity results from Vulcan's 2021 Upper Rhine Valley bulk brine sampling". Comparison of Vulcan's January 2021 Upper Rhine Valley sample result analysed at KIT (n=1), compared to Salton Sea brine results (n=unknown) as recorded in publicly available literature (https://gdr.openei.org/submissions/499 for all multi-element results except silica; US Patent 4429535 for pre-flash silica values). Salton Sea values adjusted by the density 1.25 -> from mg/kg to mg/l.

Appendix 12: Process Flow Sheet



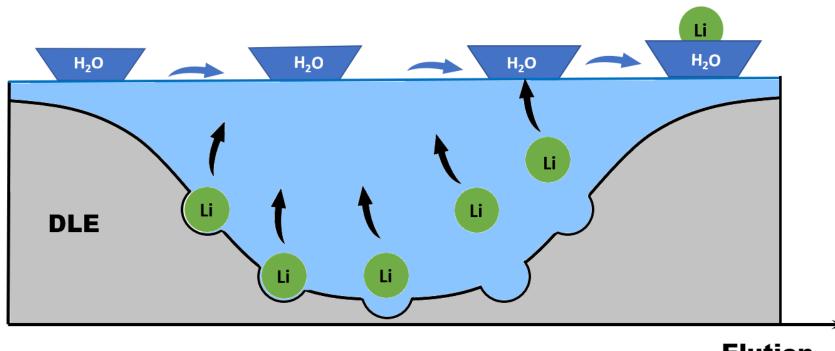
Hot brine extracted from the ground and generates steam that powers turbines and produces renewable electricity

Standard geothermal production wells successfully implemented for decades on salars


Brine flow is diverted, and lithium is extracted from the solution with a Direct Lithium Extraction (DLE) process. Commercially used for decades

Lithium chloride sent to lithium refining plant which will be converted LiCl to battery quality LiOH Water is recycled, no toxic wastes, no gases are emitted, heat and power from renewable resources, no fossil fuels are burnt

Appendix 13: Adsorption Process Step 1



Geothermal brine has a high salinity – it contains ions of various sizes and electric charges. Water molecules surrounding the ions make up a hydration shell. Small lithium ions require a double hydration shell to stabilize their electric charge in the solution. In brines with high salinity this is not possible due to the competition for water molecules with the other ions. Thus, lithium ions 'sink' to the surface of a sorbent material.

During the loading Li⁺ is adsorbed on the DLE material, while all the other ions pass through.

Appendix 14: Adsorption Process Step 2

Elution...

When the loaded DLE material is washed with water, an excess of free water molecules becomes available to the lithium ions. Formation of a double hydration shell is an energetically favored process, which drives the desorption of the lithium ions from the surface of a sorbent material.

This process is called elution and the collected wash water is called the eluate.

Eluate has a high concentration of lithium ions and very low concentration of impurities.

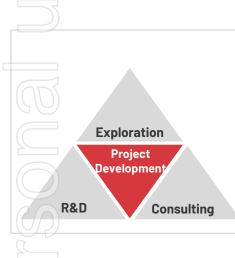
Appendix 15: Agreement To Acquire GeoThermal Engineering GmbH

GeoT is a **planning and consultancy** company for **deep geothermal energy projects**, based in the Upper Rhine Valley, **Germany**

- GeoThermal
- Highly credentialed scientific team with >100 years of combined world-leading expertise in developing geothermal projects, from exploration to production
- Motivations are fully aligned: to decarbonize heat and power in Europe with geothermal development in the Upper Rhine Valley
- Acquisition is part of Vulcan's plans to **rapidly grow its development team** in Germany, to accelerate its Zero Carbon Lithium® project towards production

R&D

Project Initiation


o Research

Networks

• Research Applications

• Project Coordination

o International Research

Exploration

- o Geology & Geophysics
- Hydrogeology & Geochemistry
- o Feasibility Studies
- o Exploration Strategies
- o Seismic Surveys (2D / 3D)
- o Well Path Planning

Consulting

- o Financing & Funding
- o Risk Mitigation
- o Market Analysis
- Economical
 Consultancy
- o Project Management
- o Public Relations

Binary Cycle Geothermal Plant

Agreement is in line with Vulcan's **strategy**:

Pursue commercially mature energy solutions

К Л К У

Work with **leading** companies in their field

Minimize risks by welcoming decades of experience of German deep geothermal project development

Appendix 16: Agreement To Acquire Gec-Co

Gec-Co Global Engineering is a consultancy company focused on deep geothermal projects at surface: power plant, heat stations, drill pads, and permitting.

- More than 20 years experience in geothermal.
- More than 300 years engineering knowledge of Gec-Co's team.
- Involved in geothermal projects in high and low enthalpy brines worldwide.
- ~ 25 employees

Local

gec-co supports municipalities in planning and implementation of hydro- and petrothermal projects. These activities include currently Traunreut, Kirchweidach and Höhenrain.

National

With branches in Augsburg, Bremen and Karlsruhe, gec-co is represented directly in the Molasse Basin, the Upper Rhine Graben and the North German Basin.

Europe

gec-co designs geothermal power and heating plants in other European countries. The most recent projects are in the Netherlands, Hungary, Romania and Switzerland.

International

gec-co

gec-co is involved in the development of geothermal projects in the high and low enthalpy area worldwide. Current projects are in particular in Turkey, East Africa and China.

Agreement is in line with Vulcan's **strategy**:

Pursue commercially mature energy solutions

K X K Y

Work with **leading** companies in their field

Minimize risks by welcoming decades of experience of German deep geothermal project development

Appendix 17: Agreement With DuPont To De-Risk Direct Lithium Extraction Further

Dupont, a Fortune 500 Top 50 company, is **one of the world's largest producers of specialty chemicals**

- Collaboration agreement signed with DuPont in January 2021
- DuPont owns proprietary **DLE products** suitable for Vulcan's Zero Carbon Lithium flowsheet
- DuPont will **leverage its portfolio** of DLE products to assist Vulcan with input and test work during Vulcan's Zero Carbon Lithium project DFS
- This input will be provided at **no cost** to Vulcan provided the parties enter into a **supply agreement for DLE products** following the completion of the DFS

OUPONT>

Direct Lithium Extraction Plant

Agreement is in line with Vulcan's **strategy**:

2

Pursue commercially mature DLE products

Work with **major suppliers** who can **manufacture at** scale

Minimize technical risks and accelerate development of the project

Appendix 18: Project Economics - CAPEX

ENERGY BUSINESS			LITHIUM BUSINESS					
	1 Geothermal Plant		2 DLE Plant		3	CLP		FULL PROJECT
PHASE 1 2024 Start	2 geothermal plants: • GB1 – 8MW • GB2 – 14MW Capex: €226M		2 DLE plants: • DB1 – 8kt LiOH • DB2 – 7kt LiOH Capex: €291M		•	entral Lithium Plant CLP1 - 15kt LiOH Dex: €182M	£473M	Geothermal
PHASE 2 2025 Start	3 geothermal plants: • GC1 – 17MW • GC2 – 17MW • GC3 – 17MW Capex: €438M		3 DLE plants: • DC1 – 8kt LiOH • DC2 – 8kt LiOH • DC3 – 8kt LiOH Capex: €460M		•	entral Lithium Plant CLP2 - 25kt LiOH Dex: €240M	€700M	DLECLP
FULL PROJECT NO PHASING 2024 Start	5 geothermal plants 74MW Capex: €665M		5 DLE Plants Capex: €751M		1Ce •	entral Lithium Plant CLP – 40kt LiOH bex: €322M	€1.1bn	19% 38%
								43% Equivalent per ton of LiOH

Appendix 19: Project Economics - Possible Structures

. . .

Re
Net Op.
NP
NPV
99
OPEX €/KV

			•	Phase 2 developed second, separated in two different businesses: Energy and Lithium. PHASE 2 2025 Start			
ENERGY BUSINESS LITHIUM BUSINESS		ENERGY BUSINESS LITHIUM BUSINESS		ENERGY BUSINESS	LITHIUM BUSINESS		
GB1 GB2 GC1 GC2 GC3	GB1 GB2 GC1 GC2 GC3	GB1 GB2 GC1 GC2 GC3	GB1 GB2 GC1 GC2 GC3	GB1 GB2 GC1 GC2 GC3	GB1 GB2 GC1 GC2 GC3		
DB1 DB2 DC1 DC2 DC3	DB1 DB2 DC1 DC2 DC3	DB1 DB2 DC1 DC2 DC3	DB1 DB2 DC1 DC2 DC3	DB1 DB2 DC1 DC2 DC3	DB1 DB2 DC1 DC2 DC3		
CLP	CLP	CLP1 CLP2	CLP1 CLP2	CLP1 CLP2	CLP1 CLP2		
74MW	40Ktpy LiOH	22MW	15Ktpy LiOH	52MW	25Ktpy LiOH		
157	500	46	187	111	312		
114	394	31	140	83	242		
685	2,802	155	971	530	1,647		
470	1,897	99	644	371	1,111		
16%	31 %	13%	27 %	18 %	32 %		
13%	26%	11%	22%	15%	26%		
6	4	4	4	7	5		
665	1,073	226	474	438	700		
		226		438			
	751		291		460		
0.066	322		182		240		
	2,681	0.078	3,201	0.061	2,855		
	In two different busines FULL PROJECT 2024 ENERGY BUSINESS GB1 GB2 GC1 GC2 GC3 DB1 DB2 DC1 DC2 DC3 CLP 74MW 157 114 685 470 16% 13% 6 6655	GB1 GB2 GC1 GC2 GC3 DB1 DB2 DC1 DC2 DC3 CLP CLP 40Ktpy LiOH 74MW 40Ktpy LiOH 157 500 114 394 685 2,802 470 1,897 16% 31% 13% 26% 6 4 665 1,073 751 0.066	businesses: Energy and Lithium. businesses: Energy and Lithium. FULL PROJECT - NO PHASING 2024 Start PHA 2024 ENERGY BUSINESS LITHIUM BUSINESS GB1 GB2 GC1 GC2 GC3 GB1 GB2 GC1 GC2 GC3 GB1 GB2 GC1 GC2 GC3 DB1 DB2 DC1 DC2 DC3 DB1 DB2 DC1 DC2 DC3 CLP CLP CLP CLP1 CLP2 DC3 74MW 40Ktpy LiOH 500 46 311 31 685 2,802 155 99 31 33% 26% 11% 13% 26% 11% 31% 226 226 226 226 0.066 322 751 322 226 322	businesses: Energy and Lithium. businesses: Energy and Lithium. FULL PROJECT - NO PHASING 2024 Start 2024 Start SUPPONESS LITHIUM BUSINESS GB1 GB2 GC1 GC2 GC3 GB1 GB2 GC1 GC2 GC3 GB1 GB2 GC1 GC2 GC3 GB1 GB2 GC1 GC2 GC3 GB1 GB2 GC1 GC2 GC3 CLP CLP CLP CLP1 CLP2 CLP1 CLP2 74MW 40Ktpy LiOH 22MW 15Ktpy LiOH 167 500 46 187 114 394 31 140 685 2,802 155 971 470 1,897 99 6444 4 4 16% 31% 26% 11% 226 474 4 6 4 4 4 4 4 4 665 1,073 226 27% 182 291 182 0.066 322 0.075 291 0.075 291 192	In two different businesses: Energy and Lithium. businesses: Energy and Lithium. different businesses FULL PROJECT - NO PHASING 2024 Start PHASE 1 2024 Start PHA 2025 ENERGY BUSINESS LITHIUM BUSINESS PHASE 1 2024 Start PHA 2025 ENERGY BUSINESS LITHIUM BUSINESS ENERGY BUSINESS <th colspan<="" td=""></th>		

. . .

Notes: Lithium Hydroxide Battery Quality at €12,542 or \$14,925/t

Phase 1 relates to Taro license, Phase 2 to Ortenau license.

Ortenau license is 100% owned by Vulcan. Vulcan ahs a 51% interest in Taro, with the right to earn at least 80% interest. 44

-

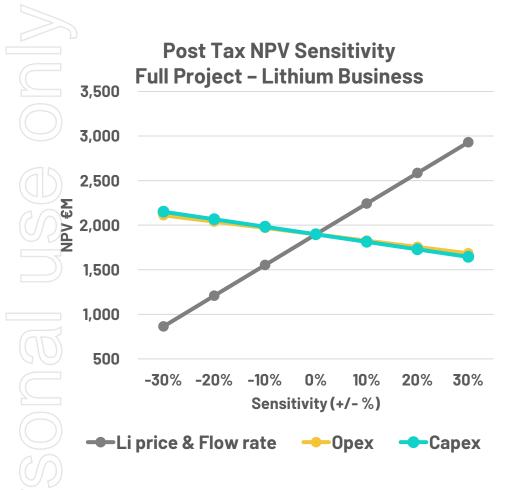
Appendix 19: Project Economics - Possible Structures

3

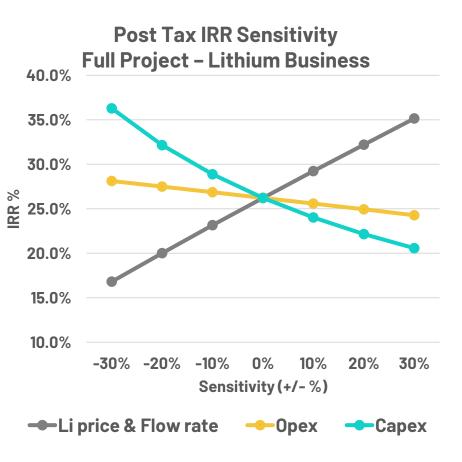
	integrated under one business.						
	FULL PROJECT NO PHASING 2024 Start						
	INTEGRATED BUSINE						
	GB1	GB2	GC1	GC2	GC		
	DB1	DB2	DC1	DC2	DC		
	CL	_P1		CLP2			
	74MW & 40Ktpy LiOH						
Revenues €M/y	652 507 3,443 2,250						
Net Op. Cash Fl. €M/y							
NPV Pre-tax €M							
NPV Post-tax €M							
IRR Pre-tax			26 %				
IRR Post-tax			21%				
Payback (year)			5				
CAPEX €M			1,738				
CAPEX Geo			665				
CAPEX DLE			751				
CAPEX CLP			<i>322</i>				
OPEX €/KWh or LiOH€/t	2,640						

Full project developed at the same time and

Ph	Phase 1 developed first and is an integrated business						
	PHASE 1 2024 Start						
IN	TEGRA		USINES	SS			
GB1	GB2	GC1	GC2	GC3			
DB1	DB2	DC1	DC2	DC3			
CL	CLP1 CLP2						
	21MW	/ & 15Ktpy	LiOH				
	232 171 1,114 703						
	23% 18% 5						
700							
		226 291					
		182					
		3,139					


Phase 2 developed second and is an integrated business							
PHASE 2 2025 Start							
INTEGRATED BUSINESS							
GB1	GB2	GC1	GC2	GC3			
DB1	DB2	DC1	DC2	DC3			
	CLP1 CLP2						
	52MW & 25Ktpy LiOH						
		420					
		324 2,145					
		1,403					
		27 %					
		22% 6					
1,138							
438							
460							
		<i>240</i> 2,792					

Appendix 20: Project Economics - Sensitivities Analysis



Project economics are resilient to extreme case scenarios

Full 40kt/y lithium business (DLE&CLP) developed at the same time with no phasing. Not including geothermal.

LITHIUM BUSINESS							
GB1	GB2	2 GC1 GC2 GC3					
DB1	DB2	DC1 DC2 DC3					
CL	CLP1 CLP2						
	40	Ktpy Li	OH				
LiOH	Price		\$1	4,925			
LiOH Price €12,542							
Rever	nues(€	EM/y)		499			
Net O	p. Cas	h Fl.		394			
NPV F	NPV Pre-tax €M 2,803						
NPV F	ost-ta	ax€M		1,897			
IRR Pr	IRR Pre-tax 31%						
IRR Post-tax 26%							
Payback(year) 4							
CAPEX €M 1,073							
OPEXLiOH€/t 2,681							

Appendix 21: information for slide 8 & 9

	Company	Code	Project	Stage	Resource Category	Resources M tonnes	Resource Grade(Li2O)	Contained LCE Tonnes	Information Source
	European Metals	ASX: EMH	Cinovec	PFS Complete	Indicated & Inferred	695.9	0.42	7.22	Corporate Presentation Released October 2020
	Rio Tinto	ASX: RIO	Jadar	PFS Complete	Indicated & Inferred	139.3	1.78	6.12	ASX Announcement Released 10 December 2020
	Infinity Lithium	ASX: INF	San Jose	PFS Complete	Indicated & Inferred	111.3	0.61	1.68	ASX Announcement Released 22 August 2019
	Savannah Resources	AIM: SAV	Barroso	DFS Underway	Measured, Indicated & Inferred	27.0	1.00	0.71	Corporate Presentation Released November 2020
	Company		Project	Stage	Resource Category	Brine Volume	Resource Grade	Contained LCE Tonnes	Information Source
	Controlled Therr	nal Resources	Hell's Kitchen	PEA Completed	Inferred	Unknown	181mg/I Li	2.7	Company Website
	E3 Metals		Clearwater, Rocky and Exshaw	PEA Completed	Inferred	5.5 billion m ³	74.6mg/I Li	2.2	PEA released in December 2020

Elders, W., Cohen, L., (1983) The Salton Sea Geothermal Field, California, Technical Report. Institute of Geophysics and Planetary Physics, University of California

GeORG (2013) Projektteam Geopotenziale des tieferen Untergrundes im Oberrheingraben Fachlich-Technischer Abschlussbericht des INTERREG-Projekts GeORG. Teil 2: Geologische Ergebnisse und Nutzungsmöglichkeiten Pauwels, H., Fouillac, C., Brach M. (1989) Secondary production from geothermal fluids processes for Lithium recovery 2nd progress report. Bureau de Recherches Geologiques et Minieres Service Geologique National Pauwels, H. and Fouillac, C. (1993) Chemistry and isotopes of deep geothermal saline fluids in the Upper Rhine Graben: Origin of compounds and water-rock interactions. Geochimica et Cosmochimica Acro Vol. 51, pp. 2737-2749 Sanjuan, B., Millot, R., Innocent, C., Dezayes, C., Scheiber, J., Brach, M., (2016) Major geochemical characteristics of geothermal brines from the Upper Rhine Graben granitic basement with constraints on temperature and circulation. Chemical Geology 428 (2016) 27-47

The Company is not aware of any new information or data that materially affects the information contained in the above sources or the data contained in this announcement

only

nal use

D

@VulcanEnergyRes
v-er.com
info@v-er.eu
ASX:VUL
FRA:6K0

Thank You

PUBLIC RELATIONS

EU

FINSBURY

Germany

Australia

